Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Transl Med ; 12(11): e949, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2117526

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronavirus family that causes the novel coronavirus disease first diagnosed in 2019 (COVID-19). Although many studies have been carried out in recent months to determine why the disease clinical presentations and outcomes can vary significantly from asymptomatic to severe or lethal, the underlying mechanisms are not fully understood. It is likely that unique individual characteristics can strongly influence the broad disease variability; thus, tailored diagnostic and therapeutic approaches are needed to improve clinical outcomes. The circadian clock is a critical regulatory mechanism orchestrating major physiological and pathological processes. It is generally accepted that more than half of the cell-specific genes in any given organ are under circadian control. Although it is known that a specific role of the circadian clock is to coordinate the immune system's steady-state function and response to infectious threats, the links between the circadian clock and SARS-CoV-2 infection are only now emerging. How inter-individual variability of the circadian profile and its dysregulation may play a role in the differences noted in the COVID-19-related disease presentations, and outcome remains largely underinvestigated. This review summarizes the current evidence on the potential links between circadian clock dysregulation and SARS-CoV-2 infection susceptibility, disease presentation and progression, and clinical outcomes. Further research in this area may contribute towards novel circadian-centred prognostic, diagnostic and therapeutic approaches for COVID-19 in the era of precision health.


Subject(s)
COVID-19 , Circadian Clocks , Ticks , Animals , SARS-CoV-2
2.
Technol Soc ; 65: 101541, 2021 May.
Article in English | MEDLINE | ID: covidwho-1104294

ABSTRACT

It is known that discrete events causing extreme societal and economic pressures as well as technological opportunity are major driving factors of innovation. Due to the presence of both of these factors during the COVID-19 pandemic it was hypothesized that there would be significant on-going innovation throughout society during the pandemic, with many of the innovations having the ability to have long-term societal impact. Analysis of literature and patent databases determined sectors of accelerated innovation to include manufacturing, personal protective equipment and digital technologies. The ability of flexible and advanced manufacturing technologies to provide more adaptable production capabilities that are less susceptible to disruption, make it likely that these technologies will be incorporated further, changing the way many manufacturing firms operate. Collaboration has increased, demonstrating increases in problem-solving efficiency; however, concerns around intellectual property is likely to reduce the long-term impact of these procedural changes. Advancements in personal protective equipment and disinfection technologies may have the long-term impact of reducing waste production and triggering changes in cleaning protocols throughout society. Digital technologies such as telemedicine, data collection, artificial intelligence and communication technologies were found to have undergone significant innovation, with possible impacts such as large-scale systemic shifts, and changes in how governments, corporations, the scientific community and the public interact.

3.
Can J Microbiol ; 67(2): 112-118, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-901438

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic is a rapidly evolving situation. New discoveries about COVID-19 and its causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continue to deepen the understanding of this novel disease. As there is currently no COVID-19 specific treatment, isolation is the most effective method to prevent transmission. Moreover, development of a safe and effective COVID-19 vaccine will be instrumental in reinstating pre-COVID-19 conditions. As of 31 July 2020, there are at least 139 vaccine candidates from around the globe in preclinical evaluation, with another 26 undergoing clinical evaluation. This paper aims to review the basics of COVID-19, including epidemiology, basic biology of SARS-CoV-2, and transmission. We also review COVID-19 vaccine development, including animal models, platforms under development, and vaccine development in Canada.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Animals , COVID-19/epidemiology , Canada/epidemiology , Cricetinae , Ferrets , Humans , Mesocricetus , Models, Animal , Primates , SARS-CoV-2/chemistry , SARS-CoV-2/genetics
4.
Bioprinting ; 20: e00104, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-800096

ABSTRACT

Infectious diseases have the ability to impact health on a global scale, as is being demonstrated by the current coronavirus disease 2019 (COVID-19) pandemic. The strenuous circumstances related to this global health crisis have been highlighting the challenges faced by the biomedical field in combating infectious diseases. Notably, printing technologies have advanced rapidly over the last decades, allowing for the incorporation of living cells in the printing process (or bioprinting) to create constructs that are able to serve as in vitro tissue or virus-disease models in combating infectious diseases. This paper describes applications of bioprinting in addressing the challenges faced in combating infectious diseases, with a specific focus on in vitro modelling and on development of therapeutic agents and vaccines. Integration of these technologies may allow for a more efficient and effective response to current and future pandemics.

SELECTION OF CITATIONS
SEARCH DETAIL